Մենդելի առաջին օրենք

Մենդելի 1 օրենք, Մենդելի առաջին օրենքն իրենից ներկայացնում է առաջին սերնդի միակերպության կանոնը։ Եթե խաչասերվող օրգանիզմները միմյանցից տարբերվում են մեկ հատկանիշով, ապա այդպիսի խաչասերումը կոչվում է միահիբրիդային խաչասերում:Այսպիսով, միահիբրիդային խաչասերման ժամանակ ուսումնասիրվում է միայն մեկ հատկանիշ։ 

Մենդելի փորձում դեղին և կանաչ ոլոռների խաչասերումից առաջացած հիբրիդները դեղին էին։ Նույն արդյունքները ստացվեցին նաև այն ժամանակ, երբ Մենդելը խաչասերեց հարթ և կնճռոտ մակերևույթ ունեցող ոլոռներ։ Առաջացած բոլոր ոլոռներն ունեին հարթ մակերևույթ։

Երկու հոմոզիգոտ ձևերի խաչասերման արդյունքում (yy և YY) ստացված հիբրիդային սերունդն արդեն հետերոզիգոտ էր, սակայն ուներ նույն ֆենոտիպը ինչ դոմինանտ հոմոզիգոտը։

Այս և մյուս արդյունքների հիման վրա Մենդելն առաջադրեց 4 վարկածներ։

Ժառանգական յուրաքանչյուր հատկանիշի համար օրգանիզմը ժառանգում է 2 ալել՝ յուրաքանչյուր ծնողից մեկական։ Այս ալելները կարող են նույնը, կամ տարբեր լինել։ Այն օրգանիզմը, որն ունի միևնույն գենի 2 նույնական ալել, կոչվում է հոմոզիգոտ։ Իսկ այն օրգանիզմը, որն ունի միևնույն գենի 2 տարբեր ալելներ կոչվում է հետերոզիգոտ։

Ժառանգականություն

Ժառանգականություն ասելով հասկանում ենք ծնողական օրգանիզմների՝ իրենց հատկանիշները և զարգացման առանձնահատկությունները հաջորդ սերնդին փոխանցելու հատկությունը։ Այն իրականանում է բազմացման միջոցով։ Ընդ որում, սեռական բազմացման դեպքում ժառանգականությունն ապահովվում է հատուկ սեռական բջիջների` գամետների միջոցով, իսկ անսեռ բազմացման ժամանակ` մարմնական (սոմատիկ) բջիջների միջոցով։ Թե՛ գամետները և թե՛ սոմատիկ բջիջներն իրենց մեջ կրում են ոչ թե ապագա օրգանիզմի հատկանիշներն ու հատկությունները, այլ միայն դրանց նախադրյալները, որոնք ստացել են գեներ անվանումը։ Գենը ԴՆԹ-ի մոլեկուլի կամ քրոմոսոմի որոշակի հատված է, որը որոշում է սպիտակուցային որևէ մոլեկուլի սինթեզը կամ որևէ տարրական հատկանիշի զարգացման հնարավորությունը։ Ժառանգականության շնորհիվ պահպանվում է տեսակի միակերպությունը։

Ժառանգականության զարգացման պատմություն

Ժառանգականության շնորհիվ կենդանիների կամ բույսերիյուրաքանչյուր տեսակ սերնդեսերունդ փոխանցում է զուտ իրեն բնորոշ հատկանիշները՝ արտաքին տեսքը, կառուցվածքը և կենսագործունեության առանձնահատկությունները՝ նպաստելով տեսակի պահպանմանը։ Ժառանգականության երևույթի նմանությունը ծնողական առանձնյակներին և սերունդներին՝ մարդանցկենդանիների և բույսերի մոտ ուշադրության կենտրոնում էր և շատ շուտով բժիշկները փորձեցին բացատրել այդ երևույթը և առաջարկեցին են տարբեր վարկածներ։ Առաջին քայլը կատարեց «բժիշկների հայր»` Հիպոկրատը (մոտ մ.թ.ա. 460-470 թվականներ), ով բացատրեց, որ օրգանիզմի ժառանգականության նյութը հավաքվում է կանաց և տղամարդանց սերմնաբջիջներում, որն էլ սկիզբ է տալիս սաղմ զարգացմանը։ Դեմոկրատը (մոտ մ.թ.ա. 460-470 թվականներ), նույնպես համամիտ էր այն մտքի հետ, որ կանանց և տղամարդկանց սեռերը հավասարազոր են ժառանգականության երևույթում, և որ սերունդները ժառնգական տեղեկատվությունը ստանում են ինչպես մայրական, այնպես էլ հայրական բջջից։ 19-րդ դարի 2-րդ կեսին ավստրիացի գիտնական Գրեգոր Մենդելըոլոռի աճեցման իր երկարամյա փորձերով ապացուցեց, որ ծնողների հատկանիշները, օրինակ՝ ծաղկի ձևը, գույնը և մյուս առանձնահատկությունները, փոխանցվում են սերունդներին ժառանգականության կայուն օրենքներով։

Մենդելը ենթադրեց, որ բջիջներում կան մանրագույն և անտեսանելի մասնիկներ, որոնք էլ կառավարում են ժառանգական հատկանիշների փոխանցումը։ Այդ մասնիկները հետագայում անվանեցին գեներ (հունարեն՝  ծագում)։ Գիտնականի ենթադրությունը հաստատվեց, երբ ասպարեզ եկան հազարավոր անգամ խոշորացնող էլեկտրոնային մանրադիտակները, որոնք հնարավորություն տվեցին զննելու ոչ միայն բջիջը, այլև բջջի մանրագույն մասնիկները։ Պարզվեց, որ բջջի կորիզում կան հատուկ «մասնագիտացված» կառուցվածքներ՝ քրոմոսոմներ՝ գեների կրողները, որոնք և ապահովում են տվյալ տեսակի բջիջների գոյացումը։ Քրոմոսոմների քանակը (կամ հավաքածուն) տվյալ տեսակի օրգանիզմների բոլոր բջիջներում միշտ նույնն է. գորտինը, օրինակ, 18 է, սոխինը՝ 16, շանը՝ 22, մարդունը՝ 46 և այլն։

Ի տարբերություն բջջի այլ բաղադրամասերի՝ քրոմոսոմները կառուցված են դեզօքսիռիբոնուկլիեինաթթվի (այդ զարմանալի նյութը քիմիկոսները կրճատ անվանել են ԴՆԹ) հսկայական մոլեկուլներից։ Հենց ԴՆԹ-ի մոլեկուլի առանձին հատվածներն են, որ կոչվում են գեներ (ժառանգակիրներ)։ Գեները հատուկ հրամաններով կառավարում են ժառանգական հատկանիշների գոյացումը։ Այդ հրամանները գրանցված են գենում՝ սահմանափակ թվով քիմիական նյութերի որոշակի հերթականությամբ, ինչպես, օրինակ, բառը կազմված է տառերի որոշակի դասավորությամբ։ Բնությունը մշակել է զարմանալի մի հատկություն. նախքան բջջի բաժանումը քրոմոսոմ կազմող ԴՆԹ-ի յուրաքանչյուր մոլեկուլ կրկնապատկվում է, ու հատուկ մեխանիզմի շնորհիվ յուրաքանչյուր նոր բջջում հայտնվում է քրոմոսոմների նույն թիվը (հավաքածուն), ինչ մայր բջջում է, այսինքն՝ ժառանգականությունն ապահովված է։ Սովորաբար բջիջներն ունեն «մասնագիտություն» (մաշկիոսկրերի, արյան և այլ բջիջներ)։ Այդ պատճառով դրանք իրենց կորիզների քրոմոսոմներում «կարդում են» ոչ թե այն ամենը, ինչ գրված է այնտեղ, այլ միայն իրենց կենսագործունեության համար անհրաժեշտ «տողերը»։

Բայց երբեմն կենդանին կամ բույսը հանկարծ ձեռք է բերում միանգամայն նոր հատկանիշներ, որ չեն ունեցել ո՛չ ծնողները, ո՛չ էլ նախնիները։ Նշանակում է՝ ինչ-որ գեներում քիմիական «նյութերը» փոխել են իրենց տեղերը, ստացել մեկ ուրիշ հրաման։ Այս երևույթը կենսաբաններն անվանել են մուտացիա նշանակում է փոփոխություն)։ Նման «սխալներն» ավելի հաճախակի են լինում, երբ օրգանիզմը ենթարկվում է թունավոր նյութերի կամ ռենտգենյան ու տիեզերական ճառագայթներիազդեցությանը։ Քրոմոսոմային ու գենային մուտացիաները, ինչպես նաև գենետիկական տեղեկույթի պահպանման, հաղորդման և իրականացման շարժընթացների խանգարումները կարող են հանգեցնել ժառանգական մի շարք հիվանդությունների առաջացման։ Հետագայում ժառանգական նյութի փոփոխություններ առաջացնելու որոշ գործոնների ունակությունը պարզելով՝ գիտնականներն զգալիորեն ընդլայնել են անհրաժեշտ օրգանիզմների ստացման հնարավորությունները։ Բայց առավել նշանակալի առաջընթացն այդ ուղղությամբ կապված է գենետիկական ճարտարագիտության հետ, որը հնարավորություն է տալիս ստանալ ցանկալի հատկություններով օրգանիզմներ (օրինակ՝ աճման հորմոնինսուլին մշակող միկրոօրգանիզմներ)։ Այդ բնագավառի հաջողությունները նախադրյալներ են ստեղծել նաև ժառանգական հիվանդությունների կանխման համար։

Մենդելի երկրորդ օրենքը

Մենդելի երկրորդ օրենքը • Ճեղքավորման օրենք — առաջին սերնդի երկու հոտերոզիգոտ առանձնյակների խաչասերումից հետո՝ երկրորդ սերնդում նկատվում է հատկանիշի ճեղքավորում որոշակի թվային հարաբերությամբ ըստ ֆենոտիպի 3։1 և ըստ գենետիպի 1։2։1։

ԳԵՆՈՏԻՊ ԵՒՖԵՆՈՏԻՊ

Ժառանգականություն ասելով մենք հասկանում ենք ծնողական օրգանիզմներում՝ իրենց  հատկանիշների առանձնահատկությունները հաջորդ սերունդին փոխանցելու հատկությունը: Սեռական բազմացման դեպքում,ժառանգականույթունն ապահովում է հատուկ սեռական բջիջների՝գամետների միջոցով, իսկ անսեռ բազմացման ժամանակ՝մարմնական, սոմատիկ, բջիջների միջոցով: Գամետները և սոմատիկ բջիջները իրենց մեջ կրում են ոչ թե ապագա օրգանիզմի հատկանիշները և հատկությունները, այլ դրանցնախադրյալները, որոնք ստացել են գեներ անվանումը: Գենը ԴՆԹ-ի  մոլեկուլիկամքրսոմի որոշակի հատված է, որը որոշում է սպիտակուցային որևէ մոլեկուլի սինթեզը կամ որևէ տարրական հատկանիշի զարգացման հնարավորությունը: Փոփոխականությունը օրգանիզմի՝ իր անհատական զարգացման ընթացքում նոր հատկանիշների ձեռք բերելու հատկությունն է:

Յուրաքանչյուր օրգանիզմի գեների ամբողջությունը կոչվում է գենոտիպ: Միևնույն տեսակին պատկանող բոլոր օրգանիզմներում յուրաքանչյուր գեն գտնվում է որոշակի քրոմոսոմի միևնույն տեղում կամ լակուսում: Քրոմոսոմների հապլոիդ հավաքում, որը բնորոշ է սեռական բջիջներին, միայն մեկ գեն է պատասխանատու տվյալ հատկանիշի դրսևորման համար, իսկ մնացած սոմատիկ բջիջներում առկա քրոմոսոմների դիպլոիդ հավաքում՝ երկու գեն: Այդ գեները գտնվում են հոմոլոկ քրոմոսոմների միևնույն լոկուսներում և կոչվում են ալելային գեներ կամ ալելներ:Գեները նշում են այբուբենի լատիներեն տառերով: Եթե զույգ ալելայինն գեները կառուցվածքով լրիվ նույնն են, այսինքն՝ ունեն նուկլեոտիդների միևնույն հաջորդականությունը, ապա կարող են նշվել՝ օրինակ՝ AA: Օրգանիզմների բոլոր հատկանիշների աբողջությունը կոչվում է ֆենոտիպ: Այն իր մեջ ներառում է ինչպես արտաքին հատկանիշների,այնպես էլ ներքին,հյուսվածքաբանական,կազմաբանական հատկանիշների ամբողջությունը:

Արյան պաշտպանական ռեակցիա: Իմունիտետ

Արյան պաշտպանական ռեակցիա: Մեր օրգանիզմը մշտապես գտնվում է արտաքին վնասակար ազդակների, այդ թվում` մանրէների, վիրուսների ազդեցության պայմաններում:

defensas.jpg

Պատմական զարգացման (էվոլյուցիա) ընթացքում օրգանիզմում առաջացել են մի շարք հարմարանքներ վնասակար ազդեցություններին դիմագրավելու համար: Այսպես` պաշտպանական դեր է կատարում մաշկը՝ պաշտպանելով նրա օրգաններն ու հյուսվածքները մեխանիկական վնասակար ազդակներից: Մեծ թվով հիվանդությունների հարուցիչներ չեն կարող առողջ մաշկով ու լորձաթաղանթով թափանցել օրգանիզմի ներքին միջավայր:

Ուշադրություն

Հիվանդաբեր մանրէների դեմ պաշտպանական դեր են կատարում նաև արյունը, հյուսվածքային հեղուկը և ավիշը:

Արդեն գիտեք, որ արյան սպիտակ գնդիկները՝ լեյկոցիտները, քայքայում, ոչնչացնում են օրգանիզմ թափանցած օտարածին նյութերը (ֆագոցիտոզ): Սակայն վնասակար մանրէների դեմ պայքարի գլխավոր միջոցը հակամարմիններն են, որոնք սպիտակուցային նյութեր են: Դրանք օրգանիզմում առաջանում են այն ժամանակ, երբ օրգանիզմ են թափանցում հիվանդաբեր մանրէներ: Հակամարմիններն իրենց ազդեցությամբ խիստ յուրովի են, այլ կերպ ասած` նրանք վնասազերծում են միայն այն օտարածին նյութերը, որոնք պատճառ են դարձել իրենց առաջացմանը: Այդ գործընթացն ընկած է իմունիտետի առաջացման հիմքում:

Իմունիտետ

Իմունիտետն օրգանիզմի անընկալունակությունն է վարակիչ հիվանդությունների նկատմամբ:

Իմունիտետի շնորհիվ օրգանիզմը հայտնաբերում է վնասակար բակտերիաներին, վիրուսներին և վնասազերծում դրանց: Տարբերում են բնական և արհեստական իմունիտետ:

Իր հերթին բնական իմունիտետը կարող է լինել բնածին և ձեռքբերովի: Բնածին բնական իմունիտետը փոխանցվում է ժառանգաբար, սերնդեսերունդ: Այն տեսակային է` բնորոշ է տվյալ տեսակին պատկանող բոլոր առանձնյակներին: Օրինակ` մարդիկ չեն հիվանդանում կենդանիների ժանտախտով:

Ձեռքբերովի բնական իմունիտետն առաջանում է կյանքի ընթացքում, երբ մարդը վարակվում է այս կամ այն հիվանդությամբ, որի հարուցիչների նկատմամբ արյան պլազմայում առաջանում են համապատասխան հակամարմիններ: Այդ դեպքում հետագայում նա այլևս չի հիվանդանում այդ հիվանդությամբ: Այսպես` մարդը փոքր հասակում կարմրուկով, ջրծաղիկով հիվանդանալուց հետո սովորաբար դրանցով այլևս չի հիվանդանում:

1.jpg

Արհեստական իմունիտետն առաջանում է մարդու անմիջական միջամտությամբ: Այն կարող է լինել ակտիվ և պասիվ: Ակտիվ արհեստական իմունիտետն առաջանում է, երբ օրգանիզմ են  մտնում տվյալ հիվանդության թուլացած կամ մահացած հարուցիչները` պատվաստուկների ձևով: Այդպիսի պատվաստանյութը, որը կոչվում է վակցինա, հիվանդություն չի առաջացնում, բայց ապահովում է հակամարմիններ առաջացնելու հատկությունը:

Նախազգուշական պատվաստումների մեթոդը մշակել է ֆրանսիացի մեծ գիտնական Լուի Պաստյորը: Պասիվ արհեստական իմունիտետի դեպքում օրգանիզմ են մտցվում բուժիչ կամ իմունային շիճուկներ, որոնք պարունակում են պատրաստի հակամարմիններ: Բուժիչ շիճուկներ կարելի է ստանալ տվյալ հիվանդությունը կրած մարդկանց արյան պլազմայից: Այլ դեպքում կենդանիներին ներարկում են տվյալ վարակիչ հիվանդության թուլացած հարուցիչներ, ինչի հետևանքով կենդանու արյան մեջ առաջանում են հակամարմիններ: Այդպիսի կենդանիներից անջատում են արյան պլազման, ստանում են բուժիչ շիճուկ և ներարկում մարդկանց:

Այսպիսով` իմունային համակարգն օրգանիզմի հզոր պաշտպանական հարմարանք է հիվանդաբեր մանրէների դեմ պայքարելու և նրանց վնասազերծելու համար: Սակայն որոշ վարակիչ հիվանդությունների դեպքում (գրիպ) իմունիտետը լինում է կարճատև, իսկ անգինայից ընդհանրապես այն չի առաջանում:

2.png
Снимок1-w1024.png

Իմունային անբավարարություն: Օրգանիզմի իմունային համակարգի ճնշումը կամ նրա բացակայությունը կարող է առաջացնել ծանր, հաճախ մահացու ելքով իրավիճակ: Այդպիսի օրինակ է հանդիսանում ձեռքբերովի իմունային անբավարարության համախտանիշը (ՁԻԱՀ), որի հարուցիչը մարդու իմունային անբավարարության վիրուսն է (ՄԻԱՎ):

Ուշադրություն

Այդ հիվանդության վիրուսը կարող է օրգանիզմ թափանցել սեռական ճանապարհով, արյան փոխներարկման, ինչպես նաև վիրահատության ժամանակ, երբ չեն պահպանվում գործիքների վարակազերծման անհրաժեշտ պայմանները:

Հիվանդության վիրուսն ախտահարում է թոքերը, նյարդային համակարգը և այլ օրգաններ, քայքայում լիմֆոցիտները, որը, ի վերջո, հանգեցնում է ծանր հյուծվածության և մահվան:

Բջջի բաժամումը՝միթոզ, քրոմոսոմի կառուցվածքը

Միտոզը բջջի կորիզի բաժանումն է` քրոմոսոմնների թվի պահմանմամբ: Միտոզը բջջային ցիկլի մի հատվածն է, սակայն այն բավականին բարդ է և իր մեջ ներառում է հինգ փուլեր`պրոֆազ, պրոմետաֆազ, մետաֆազ, անաֆազ, տելոֆազ: Քրոմոսոմների կրկնորինակների ստեղծումը կատարվում է ինտերֆազի ժամանակ և միտոզի փուլում քրոմոսոմները արդեն կրկնապատկված են: Մարդու և կենդանիների բջիջներում սկվում է ցենտրիոլների հեռացումը, ձևավորվում են բաժանման բևեռները: Պրոֆազի ժամանակ քրոմոսոմները պարուրվում են կարճանում և հաստանում: 

Քրոմոսի կառուցվածքը

Քրոմոսոմը կորիզի գլխավոր բաղադրիչն է, որը լավ է երևում բջջի բաժանման ժամանակ, և որի հիմնական ֆունկցիան ԴՆԹ-ի պահպանումն է և փոխանցումը սերնդեսերունդ։ Քրոմոսոմները երևում են միայն բաժանվող բջիջներում. ունեն բարակ՝ 14 նմ տրամագծով թելերի ձև։ Քրոմոսոմներն ունեն բարդ կառուցվածք։ Բջջի բաժանման սկզբնական և միջին փուլերում նրանք կազմված են երկու իրար կցված թելանման կամ ձողաձև մարմնիկներից՝ քրոմատիդներից։ Վերջիններս ոլորված են գալարաձև և կախված գալարվածության աստիճանից, քրոմոսոմները փոխում են իրենց չափերը՝ երկարանում կամ կարճանում։ Քրոմատիդները իրենց հերթին կազմված են մեկ կամ մի քանի զույգ թելիկներից՝ քրոմանեմաներից, որոնք լուսային մանրադիտակով տեսանելի ամենափոքր

Էուկարիոտ ՝բուսական և կենդանական բջիջների կառուցվածքը, օրգանոիդները, դրանց կառուցվածքը և ֆունկցիան։

Էուկարիոտները կենդանի օրգանիզմներ են, որոնց բջիջները պարունակում են միջուկ և թաղանթային օրգանոիդներ: Էուկարիոտների գենետիկական նյութը գտնվում է միջուկում, իսկ ԴՆԹ-ն կազմակերպվում է քրոմոսոմների մեջ: Էուկարիոտիկ օրգանիզմները կարող են լինել միաբջիջ կամ բազմաբջիջ: Էուկարիոտները ներառում են նաև բույսեր, սնկեր և նախակենդանիներ:Էուկարիոտիկ տիպիկ բջիջը ներառում է Նուկլեոլուս։Ընտրովի օրգանոիդները ներկայացված են տարբեր ներդիրներով՝ ծծումբ, պոլիֆոսֆատներ, յուղ, գլիկոգեն, պոլիսախարիդային հատիկներ: Նաև օրգանոիդներ են կոչվում դրոշակակիրներ, որոնք օգնում են բջջին շարժվել, և խմում են` սպիտակուցային ներդիրներ, որոնք կատարում են կցման գործառույթը:Օրգանոիդները պարունակում են ԴՆԹ և ունակ են փոխանցել ժառանգական տեղեկատվություն:Այսպիսով, յուրաքանչյուր բջիջի միջուկում է պարունակվում հիմնական ժառանգական տեղեկատվությունը, որն անհրաժեշտ է ամբողջ օրգանիզմի զարգացման համար `իր հատկությունների և բնութագրերի բազմազանությամբ: Դա միջուկն է, որը կենտրոնական դեր է խաղում ժառանգականության երևույթներում:

Ցիտոպթազմա

Ցիտոպլազմա, բջջի հիմնական օրգանոիդները, 2 ,

Ցիտոպլազմա կամ բջջապլազմա, բջջի կիսահեղուկ կենդանի պարունակությունն է՝ բացի բջջակորիզից ու կիսահեղուկ ներքին միջավայրը։ Ցիտոպլազման կարծես հանքային աղերի և տարբեր օրգանական նյութերի ջրային լուծույթ է:Ցիտոպլազման հայտնաբերել է Յա Պուրկինյեն 1830 թ.։ «Ցիտոպլազմա» տերմինը առաջացել է հունարեն «ցիտոս»-զետեղարան, բջիջ և «պլազմա»-կերտված, ծեփած բառերից։

350px-Biological_cell.svg

(1) Կորիզակ (2) Բջջակորիզ (3) Ռիբոսոմ (4) Ներառուկ (5) Հատիկավոր էնդոպլազմային ցանց (6) Գոլջիի ապարատ (7) Բջջակմախք (8) Հարթ էնդոպլազմային ցանց (9) Միտոքոնդրիումներ (10 ) Վակուոլներ (11) Ցիտոպլազմա (12) Լիզոսոմ (13) Ցետրիոլ

Ցիտոպլազման անգույն, լույսի ճառագայթները ուժեղ բեկող սպիտակուցների և այլ օրգանական նյութերի կոլոիդային լուծույթ է և իր խտությամբ հիշեցնում է թանձր հեղուկ՝ իր մածուցիկությամբ մոտ գլիցերինին։ Կազմված է մեմբրաններից և օրգանոիդներից, որոնց միջակա տարածությունը լցված է ցիտոպլազմայի մատրիքսով՝ հիալոպլազմայով։ Վերջինս որոշակի պայմաններում կարող է փոխակերպվել ավելի պինդ, կարծր վիճակի՝ հել և նորից վերափոխվել հեղուկի՝ զոլ:

Image result for Ցիտոպլազմա

Բջիջները մանրադիտակային գոյացություններ են, ունեն մի քանի միկրոմետրից (բակտերիաներ) մինչև 10–50 միկրոմետր և ավելի մեծություն: Ըստ ձևի՝ լինում են գնդաձև, իլիկաձև, ձվաձև, մտրակավոր և այլն: Յուրաքանչյուր բջիջ կազմված է բջջապլազմայից և կորիզից: Բջջապլազման կիսահեղուկ միջավայր է, պարունակում է բազմաթիվ օրգանոիդներ և տարբեր ներառուկներ: Կենդանիների բջիջների ներառուկներից են կորիզը, միտոքոնդրիաները, ներպլազմային ցանցը, Գոլջիի համալիրը, լիզոսոմները և այլն, իսկ բույսերինը ներառում է նաև պլաստիդներ, որոնցից առավել կարևոր են քլորոպլաստները: Բջիջներն արտաքինից պատված են բջջապլազմային թաղանթով, որն ունի բարդ կազմություն և կատարում է տարբեր ֆունկցիաներ: Կորիզը պարունակում է միկրոկառուցվածքներ, որոնք կրում են բջջի ժառանգական տեղեկությունները: Բջիջների մեծամասնությունն ունի 1 կորիզ, բայց կան նաև երկ- և բազմակորիզավորներ: Կորիզն արտաքինից սահմանազատված է թաղանթով, որի ծակոտիներով դեպի բջջապլազմա կարող են անցնել նույնիսկ խոշոր մոլեկուլներ (օրինակ՝ տեղեկակիր ռիբոնուկլեինաթթուները), որոնք գենետիկական տեղեկություն են հաղորդում (փոխանցում) բջջային որոշակի սպիտակուցների սինթեզի մասին: Բջիջների կողմից սինթեզվող որոշ նյութեր կամ վերջնանյութեր հեռացվում են բջիջներից հյութազատության, արտազատության օգնությամբ:Շատ միկրոօրգանիզմներ (օրինակ՝ բակտերիաները, որոշ ջրիմուռներ ու սնկեր, նախակենդանիները) կազմված են 1 բջջից: Բազմաբջիջ օրգանիզմները, որոնցից են բարձրակարգ բույսերն ու կենդանիները, այդ թվում և մարդը, կազմված են մեծ քանակությամբ բազմատեսակ բջիջներից (օրինակ՝ մարդու օրգանիզմը բաղկացած է մոտ 1014 բջիջներից), որոնք միավորված են հյուսվածքներում ու օրգաններում:Ժամանակակից դասակարգմամբ բջիջները բաժանում են ըստ հյուսվածքի տեսակի՝ էպիթելային, շարակցական, ոսկրային, մկանային, նյարդային, որոնք կատարում են տարբեր ֆունկցիաներ: Մկանային բջիջներից գոյանում են մկանները, որոնցով պայմանավորված է շարժվելու ունակությունը, արյան կարմիր բջիջները տեղափոխում են թթվածինը, մաշկի բջիջները պաշտպանիչ ծածկ են ստեղծում մարմնի համար, նյարդային բջիջներն ընկալում են ցավը, տաքը, ցուրտը և գրգիռը փոխանցում օրգանիզմի ամենակարևոր օրգաններից մեկի` գլխուղեղի նյարդային բջիջներին և այլն

սպիտակուցներ

Սպիտակուցի կառուցվածք
Սպիտակուցները բարձրամոլեկուլային բնական օրգանական նյութեր են որն, կազմված են ամինաթթուներից և կարևորագույն դեր են  կատարում օրգանիզմների կառուցվածքում:

Սպիտակուցի մոլեկուլները գծային պոլիմերներ են, որոնք կազմված են α-L-ամինաթթուների մնացորդներից։ Սպիտակուցի կազմի մեջ կարող են մտնել նաև ձևափոխված ամինաթթվային մնացորդներ և ոչ ամինաթթվային ծագում ունեցող բաղադրիչներ։ Սպիտակուցների կազմում ամինաթթուների նշանակման համար օգտագործում են մեկ կամ երեք տառից բաղկացած կրճատումներ։ Քանի որ կենդանի օրգանիզմների կազմի մեջ մտնող սպիտակուցների մեծամասնությունը կազմված են 20 ամինաթթուներից, այս պատճառով կարող է թվալ, թե սպիտակուցների հնարավոր թիվը փոքր է և սահմանափակ։

Լինդեստրյոմ-Լանգը առաջարկել է առանձնացնել սպիտակուցի կազմավորման 4 մակարդակ՝ առաջնային, երկրորդային, երրորդային և չորրորդային կառուցվածքներ՝

Առաջին կառուցվածք

Առաջնային կառուցվածքը պոլիպեպտիդային շղթայում ամինաթթվային մնացորդների հաջորդականությունն է։ Սպիտակուցի առաջնային կառուցվածքը, որպես կանոն, նկարագրում են մեկ կամ երեք տառերից բաղկացած նշանակումների օգտագործմամբ։

Առաջնային կառուցվածքի կարևոր հատկություններից է կոնսերվատիվ միտումը, որը որոշակի գործառույթ ունեցող ամինաթթվային մնացորդների խմբերի կայուն ամբողջությունն է և հանդիպում է շատ սպիտակուցներում։

Երկրորդ կառուցվածք
Երկրորդային կառուցվածքը սպիտակուցի պոլիպեպտիդային շղթայի հատվածների տեղային դասավորությունն է, որը կայունացվում է ջրածնային կապերի միջոցով։

  • α-պարույր՝ մոլեկուլի երկար առանցքի շուրջը խիտ դասավորված են պարույրները, մեկ պարույրում կա 3,6 ամինաթթվային մնացորդ, մեկ քայլը 0,54 նմ է (մեկ ամինաթթվային մնացորդը՝ 0,15 նմ)[24]։ Պարույրը պահպանում է իր ձևը պեպտիդային խմբերի H և O ատոմների միջև առաջացող պեպտիդային կապերով։ α-պարույրը կարող է լինել աջ և ձախ պարուրված, սպիտակուցներում գերակշռում է աջ պարուրված տարբերակը։ Պարույրը քանդվում է գլուտամինաթթվի, լիզինի, արգինինի էլեկտրոստատիկ փոխհարաբերությունը։ Ասպարգինի, սերինի, թրեոնինի և լեյցինի մնացորդները միմյանց մոտ դասավորվելիս կարող են խանգարել պարույրի ձևավորմանը, պրոլինի մնացորդն առաջացնում է շղթայի ծռում, որը նույնպես քանդում է α-պարույրը։
  • β-պարույր (շարժական շերտեր)՝ մի քանի կեռմանաձև պոլիպեպտիդային շղթաներ, որոնցում ջրածնային կապեր առաջանում են հադնիպակաց շղթաների կամ միմյանցից հեռու դասավորված ամինաթթվային մնացորդների միջև[25]։ Այս շղթաներն իրենց N-ծայրով ուղղված են հակառակ (հակազուգահեռ կողմնորոշում)։ β-պարույրի առաջացման համար կարևոր կողմնային ամինաթթվային մնացորդներից են գլիցինն ու ալանինը։
  • π-պարույր,
  • 310-պարույր,
  • չկարգավորված հատվածներ։

Երրորդ կառուցվածք
Երրորդային կառուցվածքը պոլիպեպտիդային շղթայի տարածական դասավորությունն է։ Այն կազմված է երկրորդային կառուցվածքի տարրերից, որոնք կայունացվում են տարբեր փոխհարաբերությունների, հատկապես հիդրոֆոբ փոխհարաբերության շնորհիվ։ Կայուն երրորդային կառուցվածքում կան՝

  • կովալենտ կապեր ցիստեինի երկու մնացորդների միջև՝ դիսուլֆիդային կապեր,
  • իոնային կապեր հանդիպակաց դասավորված ամինաթթվային մնացորդների երկու խմբերի միջև,
  • ջրածնային կապեր,
  • հիդրոֆոբ փոխհարաբերություն։ Սպիտակուցի մոլեկուլը ջրի հետ փոխհարաբերվելիս ընդունում է այնպիսի կառուցվածք, որտեղ ոչ բևեռային ամինաթթուների կողմնային խմբերը մեկուսանում են ջրային լուծույթից, իսկ բևեռային խմբերը՝ հայտնվում մոլեկուլի մակերեսին։

Չորորդ կառուցվածք
Չորրորդային կամ ենթամիավորումային, դոմենային կառուցվածքը մեկ սպիտակուցային կոմպլեքսի ներսում տարբեր պոլիպեպտիդային շղթաների փոխադարձ դասավորությունն է։ Չորրորդային կառուցվածքի մեջ մտնող սպիտակուցի մոլեկուլները ռիբոսոմի վրա առաջանում են առանձին-առանձին և միայն սպիտակուցի սինթեզից հետո ձևավորում վերմոլեկուլային չորրորդային կառույցը։ Չորրորդային կառուցվածքի մեջ կարող են մտնել ինչպես նման, այնպես էլ տարբերվող պոլիպեպտիդային շղթաներ։ Չորրորդային կառուցվածքի կայունացմանը մասնակցում են նույն փոխհարաբերությունները, ինչ երրորդայինի դեպքում։ Վերմոլեկուլային այսպիսի սպիտակուցային կառուցվածքները կարող են պարունակել տասնյակ մոլեկուլներ։

Սպիտակուցի բնափոխում
Սպիտակուցի բնափոխումը կամ դենատուրացիան երկրորդային, երրորդային կամ չորրորդային կառուցվածքի կորստի հետ կապված ցանկացած փոփոխությունն է, որը հանգեցնում է սպիտակուցի ակտիվության և/կամ ֆիզիկաքիմիական հատկությունների փոփոխությանը։

Սպիտակուցի Ֆունկցիան օրգանիզմում
Ինչպես մյուս կենսաբանական մակրոմոլեկուլները, սպիտակուցները բոլոր կենդանի օրգանիզմների անհրաժեշտ բաղադրամաս են և խաղում են կարևոր դեր բջջի կենսագործունեությունում։ Սպիտակուցները իրականացնում են նյութափոխանակության գործընթացները։ Նրանք կազմում են ներբջջային կառույցները՝ օրգանոիդները և բջջակմախքը, արտազատվում են միջբջջային տարածություն, որտեղ կարող են իրականացնել միջբջջային հաղորդակցությանը, մասնակցել սննդանյութերի հիդրոլիզին և միջբջջային նյութի ձևավորմանը։

Սպիտակուցներ, աստղաջրեր, ճարպեր,

Ածխաջրերը (ածխաջրատներ, շաքարներ)՝ քիմիական միացություններ են, որոնք կազմված են ածխածնից, թթվածնից և ջրածինտարրերից։ Ածխաջուր են կոչվում, որովհետև միացության մեջ ջրածին և թթվածին տարրերը գտնվում են ջրի մոլեկուլում ունեցած համամասնությամբ՝ Cx(H2O)y։ Կառուցվածքով և քիմիական հատկություններով ունեն շաքարների բնույթ։ Սպիտակուցների և ճարպերի հետ միասին ածխաջրերը կարևոր նշանակություն ունեն մարդու և կենդանիների օրգանիզմներում ընթացող նյութերի ու էներգիայի փոխանակության շարժընթացում։ Մտնում են բուսական, կենդանական և բակտերային օրգանիզմների կազմության մեջ։ Ածխաջրերը մարդու և կենդանիների սննդի կարևոր բաղադրամաս են և ապահովում են դրանց կենսագործունեության համար անհրաժեշտ էներգիան։ Հասուն մարդու օրգանիզմում էներգիայի կեսից ավելին առաջանում է ածխաջրերից:Լիպիդները օրգանական նյութեր են, որոնք մոլեկուլի կառուցվածքով և ֆիզիկաքիմիական հատկություններով նման են ճարպերին։ Գլիցերինի և բարձրագույն ճարպաթթուների, սպիրտների, ալդեհիդների ևն միացությունների ածանցյալներ են։ Կարևոր նշանակություն ունեն բուսական և կենդանական աշխարհում։ Ճարպերի հետ կազմում են լպիդների դասը։ Տերմինը հնացած է և համարյա չի գործածվում։ Պարունակվում են կենդանի և բուսական բոլոր բջիջներիում։ Ամենատարածվածը՝ ճարպերն են։ Ջրում չեն լուծվում, լուծվում են օրգանական լուծիչներում։ Բջջի չոր նյութի 5-10%, իսկ ճարպահյուսվածքում՝ 90%։Սպիտակուցները (պրոտեիններ, պոլիպեպտիդներ)՝բարձրամոլեկուլային օրգանական միացություններ են, որոնք կազմված են պեպտիդային կապով իրար միացած ալֆա-ամինաթթուներից: Կենդանի օրգանիզմներում սպիտակուցների ամինաթթվային հաջորդականությունը որոշվում է գենետիկական կոդով, սինթեզելիս հիմնականում օգտագործվում է ամինաթթուների 20 տեսակ։ Ամինաթթուների տարբեր հաջորդականություններն առաջացնում են տարբեր հատկություններով օժտված սպիտակուցներ։ Ամինաթթվի մնացորդները սպիտակուցի կազմում կարող են ենթարկվել նաև հետատրանսլյացիոն ձևափոխությունների, ինչպես բջջում ֆունկցիայի իրականացման ժամանակ, այնպես էլ մինչև ֆունկցիայի իրականացումը։ Հաճախ կենդանի օրգանիզմներում սպիտակուցի երկու տարբեր մոլեկուլներ միանում են միմյանց՝ առաջացնելով բարդ սպիտակուցային կոմպլեքսներ, ինչպիսին, օրինակ, ֆոտոսինթեզի սպիտակուցային կոմպլեքսն է։

Ճարպերը կենդանական և բուսական հյուսվածքների բաղադրիչներ են։ Կազմված են հիմնականում գլիցերինի և տարբեր ճարպաթթուների միացություններից՝ գլիցերիդներից։ Պարունակում են կենսաբանորեն ակտիվ ֆոսֆատիդներ, ստերիններ և որոշ վիտամիններ։

Ճարպերը սննդի անհրաժեշտ և առավել կալորիական բաղադրամասեր են և օրգանիզմի էներգիայի աղբյուր։ Դրանք նպաստում են սննդի մեջ օգտագործվող այլ մթերքների ավելի լավ ու լիարժեք յուրացմանը, հաճելի համ ու բուրմունք են տալիս մթերքներին։